;;; color.el --- Color manipulation laboratory routines -*- coding: utf-8; -*- ;; Copyright (C) 2010 Free Software Foundation, Inc. ;; Author: Julien Danjou ;; Keywords: html ;; This file is part of GNU Emacs. ;; GNU Emacs is free software: you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation, either version 3 of the License, or ;; (at your option) any later version. ;; GNU Emacs is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; You should have received a copy of the GNU General Public License ;; along with GNU Emacs. If not, see . ;;; Commentary: ;; This package provides color manipulation functions. ;;; Code: (eval-when-compile (require 'cl)) ;; Emacs < 23.3 (eval-and-compile (unless (boundp 'float-pi) (defconst float-pi (* 4 (atan 1)) "The value of Pi (3.1415926...)."))) (defun color-rgb->hex (red green blue) "Return hexadecimal notation for RED GREEN BLUE color. RED GREEN BLUE must be values between 0 and 1 inclusively." (format "#%02x%02x%02x" (* red 255) (* green 255) (* blue 255))) (defun color-complement (color) "Return the color that is the complement of COLOR." (let ((color (color-rgb->normalize color))) (list (- 1.0 (car color)) (- 1.0 (cadr color)) (- 1.0 (caddr color))))) (defun color-complement-hex (color) "Return the color that is the complement of COLOR, in hexadecimal format." (apply 'color-rgb->hex (color-complement color))) (defun color-rgb->hsv (red green blue) "Convert RED GREEN BLUE values to HSV representation. Hue is in radians. Saturation and values are between 0 and 1 inclusively." (let* ((r (float red)) (g (float green)) (b (float blue)) (max (max r g b)) (min (min r g b))) (list (/ (* 2 float-pi (cond ((and (= r g) (= g b)) 0) ((and (= r max) (>= g b)) (* 60 (/ (- g b) (- max min)))) ((and (= r max) (< g b)) (+ 360 (* 60 (/ (- g b) (- max min))))) ((= max g) (+ 120 (* 60 (/ (- b r) (- max min))))) ((= max b) (+ 240 (* 60 (/ (- r g) (- max min))))))) 360) (if (= max 0) 0 (- 1 (/ min max))) (/ max 255.0)))) (defun color-rgb->hsl (red green blue) "Convert RED GREEN BLUE colors to their HSL representation. RED, GREEN and BLUE must be between 0 and 1 inclusively." (let* ((r red) (g green) (b blue) (max (max r g b)) (min (min r g b)) (delta (- max min)) (l (/ (+ max min) 2.0))) (list (if (= max min) 0 (* 2 float-pi (/ (cond ((= max r) (+ (/ (- g b) delta) (if (< g b) 6 0))) ((= max g) (+ (/ (- b r) delta) 2)) (t (+ (/ (- r g) delta) 4))) 6))) (if (= max min) 0 (if (> l 0.5) (/ delta (- 2 (+ max min))) (/ delta (+ max min)))) l))) (defun color-srgb->xyz (red green blue) "Converts RED GREEN BLUE colors from the sRGB color space to CIE XYZ. RED, BLUE and GREEN must be between 0 and 1 inclusively." (let ((r (if (<= red 0.04045) (/ red 12.95) (expt (/ (+ red 0.055) 1.055) 2.4))) (g (if (<= green 0.04045) (/ green 12.95) (expt (/ (+ green 0.055) 1.055) 2.4))) (b (if (<= blue 0.04045) (/ blue 12.95) (expt (/ (+ blue 0.055) 1.055) 2.4)))) (list (+ (* 0.4124564 r) (* 0.3575761 g) (* 0.1804375 b)) (+ (* 0.21266729 r) (* 0.7151522 g) (* 0.0721750 b)) (+ (* 0.0193339 r) (* 0.1191920 g) (* 0.9503041 b))))) (defun color-xyz->srgb (X Y Z) "Converts CIE X Y Z colors to sRGB color space." (let ((r (+ (* 3.2404542 X) (* -1.5371385 Y) (* -0.4985314 Z))) (g (+ (* -0.9692660 X) (* 1.8760108 Y) (* 0.0415560 Z))) (b (+ (* 0.0556434 X) (* -0.2040259 Y) (* 1.0572252 Z)))) (list (if (<= r 0.0031308) (* 12.92 r) (- (* 1.055 (expt r (/ 1 2.4))) 0.055)) (if (<= g 0.0031308) (* 12.92 g) (- (* 1.055 (expt g (/ 1 2.4))) 0.055)) (if (<= b 0.0031308) (* 12.92 b) (- (* 1.055 (expt b (/ 1 2.4))) 0.055))))) (defconst color-d65-xyz '(0.950455 1.0 1.088753) "D65 white point in CIE XYZ.") (defconst color-cie-ε (/ 216 24389.0)) (defconst color-cie-κ (/ 24389 27.0)) (defun color-xyz->lab (X Y Z &optional white-point) "Converts CIE XYZ to CIE L*a*b*. WHITE-POINT can be specified as (X Y Z) white point to use. If none is set, `color-d65-xyz' is used." (destructuring-bind (Xr Yr Zr) (or white-point color-d65-xyz) (let* ((xr (/ X Xr)) (yr (/ Y Yr)) (zr (/ Z Zr)) (fx (if (> xr color-cie-ε) (expt xr (/ 1 3.0)) (/ (+ (* color-cie-κ xr) 16) 116.0))) (fy (if (> yr color-cie-ε) (expt yr (/ 1 3.0)) (/ (+ (* color-cie-κ yr) 16) 116.0))) (fz (if (> zr color-cie-ε) (expt zr (/ 1 3.0)) (/ (+ (* color-cie-κ zr) 16) 116.0)))) (list (- (* 116 fy) 16) ; L (* 500 (- fx fy)) ; a (* 200 (- fy fz)))))) ; b (defun color-lab->xyz (L a b &optional white-point) "Converts CIE L*a*b* to CIE XYZ. WHITE-POINT can be specified as (X Y Z) white point to use. If none is set, `color-d65-xyz' is used." (destructuring-bind (Xr Yr Zr) (or white-point color-d65-xyz) (let* ((fy (/ (+ L 16) 116.0)) (fz (- fy (/ b 200.0))) (fx (+ (/ a 500.0) fy)) (xr (if (> (expt fx 3.0) color-cie-ε) (expt fx 3.0) (/ (- (* fx 116) 16) color-cie-κ))) (yr (if (> L (* color-cie-κ color-cie-ε)) (expt (/ (+ L 16) 116.0) 3.0) (/ L color-cie-κ))) (zr (if (> (expt fz 3) color-cie-ε) (expt fz 3.0) (/ (- (* 116 fz) 16) color-cie-κ)))) (list (* xr Xr) ; X (* yr Yr) ; Y (* zr Zr))))) ; Z (defun color-srgb->lab (red green blue) "Converts RGB to CIE L*a*b*." (apply 'color-xyz->lab (color-srgb->xyz red green blue))) (defun color-rgb->normalize (color) "Normalize a RGB color to values between 0 and 1 inclusively." (mapcar (lambda (x) (/ x 65535.0)) (x-color-values color))) (defun color-lab->srgb (L a b) "Converts CIE L*a*b* to RGB." (apply 'color-xyz->srgb (color-lab->xyz L a b))) (defun color-cie-de2000 (color1 color2 &optional kL kC kH) "Computes the CIEDE2000 color distance between COLOR1 and COLOR2. Colors must be in CIE L*a*b* format." (destructuring-bind (L₁ a₁ b₁) color1 (destructuring-bind (L₂ a₂ b₂) color2 (let* ((kL (or kL 1)) (kC (or kC 1)) (kH (or kH 1)) (C₁ (sqrt (+ (expt a₁ 2.0) (expt b₁ 2.0)))) (C₂ (sqrt (+ (expt a₂ 2.0) (expt b₂ 2.0)))) (C̄ (/ (+ C₁ C₂) 2.0)) (G (* 0.5 (- 1 (sqrt (/ (expt C̄ 7.0) (+ (expt C̄ 7.0) (expt 25 7.0))))))) (a′₁ (* (+ 1 G) a₁)) (a′₂ (* (+ 1 G) a₂)) (C′₁ (sqrt (+ (expt a′₁ 2.0) (expt b₁ 2.0)))) (C′₂ (sqrt (+ (expt a′₂ 2.0) (expt b₂ 2.0)))) (h′₁ (if (and (= b₁ 0) (= a′₁ 0)) 0 (let ((v (atan b₁ a′₁))) (if (< v 0) (+ v (* 2 float-pi)) v)))) (h′₂ (if (and (= b₂ 0) (= a′₂ 0)) 0 (let ((v (atan b₂ a′₂))) (if (< v 0) (+ v (* 2 float-pi)) v)))) (ΔL′ (- L₂ L₁)) (ΔC′ (- C′₂ C′₁)) (Δh′ (cond ((= (* C′₁ C′₂) 0) 0) ((<= (abs (- h′₂ h′₁)) float-pi) (- h′₂ h′₁)) ((> (- h′₂ h′₁) float-pi) (- (- h′₂ h′₁) (* 2 float-pi))) ((< (- h′₂ h′₁) (- float-pi)) (+ (- h′₂ h′₁) (* 2 float-pi))))) (ΔH′ (* 2 (sqrt (* C′₁ C′₂)) (sin (/ Δh′ 2.0)))) (L̄′ (/ (+ L₁ L₂) 2.0)) (C̄′ (/ (+ C′₁ C′₂) 2.0)) (h̄′ (cond ((= (* C′₁ C′₂) 0) (+ h′₁ h′₂)) ((<= (abs (- h′₁ h′₂)) float-pi) (/ (+ h′₁ h′₂) 2.0)) ((< (+ h′₁ h′₂) (* 2 float-pi)) (/ (+ h′₁ h′₂ (* 2 float-pi)) 2.0)) ((>= (+ h′₁ h′₂) (* 2 float-pi)) (/ (+ h′₁ h′₂ (* -2 float-pi)) 2.0)))) (T (+ 1 (- (* 0.17 (cos (- h̄′ (degrees-to-radians 30))))) (* 0.24 (cos (* h̄′ 2))) (* 0.32 (cos (+ (* h̄′ 3) (degrees-to-radians 6)))) (- (* 0.20 (cos (- (* h̄′ 4) (degrees-to-radians 63))))))) (Δθ (* (degrees-to-radians 30) (exp (- (expt (/ (- h̄′ (degrees-to-radians 275)) (degrees-to-radians 25)) 2.0))))) (Rc (* 2 (sqrt (/ (expt C̄′ 7.0) (+ (expt C̄′ 7.0) (expt 25.0 7.0)))))) (Sl (+ 1 (/ (* 0.015 (expt (- L̄′ 50) 2.0)) (sqrt (+ 20 (expt (- L̄′ 50) 2.0)))))) (Sc (+ 1 (* C̄′ 0.045))) (Sh (+ 1 (* 0.015 C̄′ T))) (Rt (- (* (sin (* Δθ 2)) Rc)))) (sqrt (+ (expt (/ ΔL′ (* Sl kL)) 2.0) (expt (/ ΔC′ (* Sc kC)) 2.0) (expt (/ ΔH′ (* Sh kH)) 2.0) (* Rt (/ ΔC′ (* Sc kC)) (/ ΔH′ (* Sh kH))))))))) (provide 'color) ;;; color.el ends here