Being Productive
With Emacs

Part 3

)

4

Phil Sung

sipb-iap-emacs@mit.edu
http://stuff.mit.edu/iap/emacs
Special thanks to Piaw Na and Arthur Gleckler
These slides are licensed under the GNU FDL.



Previously...

e Customizing emacs
- Setting variables
- Key bindings
- Hooks
« Extending emacs with new elisp procedures

- Simple text manipulation
- Interactive specifications



This time...

« Extending emacs

- Advising functions

- Foundations of elisp

- More about interactive specifications
- Manipulating text in emacs

- Creating a major mode



Advice

« Used to add to any existing function
* Pieces of advice are modular

* Advice vs. hooks

e Advice can be dangerous!



Advice example: previous line

e When next-line—-at-end is setto t, next-
line on last line of buffer creates a new line

« Create analagous behavior for previous-
line at beginning of buffer

— When on first line of buffer, insert a newline before
moving backwards



Advice example: previous-line

(defadvice previous-line
(before next-line-—-at-end
(&optional arg try-vscroll))
"Insert new line when running previous-line
at first line of file"
(if (and next-line-add-newlines
(save—excursion (beginning-of-line)
(bobp) ) )
(progn (beginning-of-line)
(newline))))



Advice syntax

(defadvice function-to-be-modified
(where
name-of-advice
(arguments—-to—-original-function))
"Description of advice"
(do—-this)
(do—-that))

where can be before, after, or around



Enabling advice

e (ad—enable—-advice 'previous-line
'before
'next—-line—-at-end)

e (ad—-disable—advice 'previous-line
'before
'next—-line—at-end)



Activating advice

e (ad—activate 'previous-line)

- Do this every time advice is defined, enabled, or
disabled

e (ad—-deactivate 'previous-line)



Ways to use advice

e before: Add code before a command
e after: Add code after a command

* around: Make a wrapper around invocation of
command

- Useful for executing the command more than once
or not at all

- You can also modify the environment



Example: around-advice

e (defadvice previous—line
(around my—advice)
"Conditionally allow previous—-line."
(Lf conditionl
ad—-do-it))



Foundations of elisp

» Data types in elisp
« Control flow



Data types

 Lisp data types
- integer, cons, symbol, string, ...
— Cursor position represented as integer

« Emacs-specific data types

- buffer, marker, window, frame, overlay, ...



Control flow

e (progn (do-this)
(do—something-else))

 All forms are evaluated, and the result of the last one
IS returned

- Useful in e.g. (if var (do-this) (do-that)) Where
a single form is required

- Some control structures like 1et have an implicit
progn



Control flow

e (if condition
do-this-if-true
do-this-is-false)

e (cond (conditionl resultl)

(condition2 result?2)

(t default—-result))



Control flow

« or returns the first non-nil argument, or nil

— Short-circuit evaluation

— (defun frob-buffer (buffer)
"Frob BUFFER (or current buffer if it's nil)"
(let ((buf (or buffer
(current-buffer)))

..)

— (defun frob-buffer (buffer)
"Frob BUFFER or prompt the user if it's nil"
(let ((buf (or buffer
(read-buffer "Prompt: ")))

..)



Control flow

* and returns the last argument if all arguments
are non-nil

— Short-circuit evaluation
— (and conditionl condition2 (do-this))

e equivalent to:

(Lf (and conditionl condition2)
(do—-this))



Control flow

e (while condition
(do—-this)
(do—-that)

..)



Dynamic scoping

e (defun first (x)
(second))
(defun second ()
(message "%d" x))

 What does (first 5) do?
- Dynamic scoping: 5
- Lexical scoping: a global value of x is found



Using dynamic scoping

e Setting variables can alter function behavior

- No need to pass extra arguments through the chain
of function calls

e ; text search i1is case-sensitive
; when case-fold-search is nil
(let ((case—-fold-search nil))

(a—complex—command) )

- Any searches done inside a-complex—-command
are altered to be case sensitive



Interactive forms

» Recall: interactive tells elisp that your function
may be invoked with M-x, and specifies what
arguments to provide

* The provided arguments may be:

- The result of prompting the user (e.g. for a buffer)
- Something in the current state (e.g. the region)



Interactive forms

« Example: find-file (C-x C-f)
- (find-file FILENAME) opens FILENAME in a
new buffer

- M-x find-file or C-x C-f prompts user for a
flename, then calls (find-file ...) withit

e |Interactive forms make functions more flexible,
allowing code reuse



Interactive forms

* Place any of the following at the top of your
function

« Pass no arguments

— (interactive)

* Prompt user for a buffer to provide

— (interactive "bSelect a buffer: ")

— Like how Kill-buffer works



Interactive forms

* Prompt user for a file to provide
— (interactive "fFile to read: ")

— Like how find-file works
 Provide nil

— (interactive "i")



Interactive forms

* Provide position of point
— (interactive "d")

* Provide positions of point and mark, first one
first

- (interactive "r")

- Example: indent-region



Interactive forms

* Provide prefix argument
— (interactive "p")

- Example: previous-line



Example: interactive forms

e (defun count-words-region (beginning end)
"Print number of words in the region."
(interactive "r")

(save—excursion
(let ((count 0))
(goto—-char beginning)
(while
(and
(< (point) end)
(re—-search-forward "\\w+\\W*" end t))
(setg count (1+ count)))
(message "Region contains %d word%s"
count
(if (= 1 count) "™ "s")))))



Interactive forms

* interactive can provide multiple arguments to
your function

- Separate different specifiers with a newline "\n"
- Example:

(interactive
"bSelect buffer: \nfSelect file: ")



Reading text

 char—-after, char-before
e (buffer—-substring start end)

e (thing—-at-point 'word)
'line, 'whitespace, etc.



Locating the cursor

point
point—-min, point-max
bobp, eobp, bolp, eolp

current-column



Moving around In text

e goto—-char
- Example: (goto-char (point-min))

 All your favorite keyboard-accessible
commands (C-£, C-b, etc.)

e save—excursion

- Saves current buffer, point and mark and restores
them after executing arbitrary code



Modifying text

(insert "string")
(iLnsert-buffer buffer)
(newline)

(delete—-region start end)



Searching text

e (search-forward "text" LIMIT NOERROR)
- LIMIT means only search to specified position

- When no match is found, nil is returned if
NOERROR ist
e (re-search-forward "regexp"

LIMIT
NOERROR)



Manipulating buffers

get-buffer—-create

- Retrieves a buffer by name, creating it if necessary
current-buffer

set-buffer

kill-buffer



Manipulating buffers

« Many functions can either take a buffer object
or a string with the buffer name

 For internal-use buffers, use a name which
starts with a space



Getting user input

read-buffer
read-file

read—-string

etc.



Finding the right functions

« Many functions are only intended to be called
interactively

- M—< Oor beginning-of-buffer sets the mark and
prints a message

- To move to the beginning of the buffer, use
(goto—-char (point-min)) instead

* Function documentation contains warnings
about lisp use



Local variables

« Variables can be either global or local to a
buffer

- Example: £fill-column

— make-local-variable

o Default values

- Example: default-fill-column



Defining a new major mode

* A major mode is defined by a procedure which:
- Sets "major-mode
- Sets a keymap
- Runs associated hooks
- Sets local variables

e Lots of code reuse between modes

- Usually, invoke another mode command first, then
tweak keybindings, etc. (e.g. C mode)



Defining a new major mode

 The define-derived-mode macro does most of
these things for you

- Inherits settings from another major mode:

— (define—-derived-mode
new—-mode
parent—-mode
name-of-mode

cee)



Example: major mode

e (define—-derived-mode
sample—-mode
python-mode
"Sample"
"Major mode for illustrative purposes."
(set (make-local-variable
'require—-final—-newline)
mode—-require—-final—-newline))

 The macro defines M-x sample-mode

- It also registers sample-mode-map,
sample-mode-syntax-table, eflC.



Example: major mode

* Now we define sample-mode-map:

- (defvar sample—-mode-map
(let ((map (make—-sparse-keymap)))
(define-key map "\C-c\C-c"
' some—new—command)
(define-key map "\C-c\C-v"
'some—-other—command)
map)
"Keymap for “~special-mode'.")

» Keys defined here take precedence over globally defined keys



Next steps

» Making a new major mode
- ?7-mode-syntax-table

- font lock and font-lock-defaults to control syntax
highlighting



Next steps

 Many emacs applications use buffers to interact
with the user

- Use overlays or text properties to make 'clickable’
regions



Learning more about elisp

 Elisp tutorial

- M-x info, select "Emacs Lisp Intro"
» Elisp manual

- M-x info, select "elisp”
 Emacs source code

- C-h f or C-h k to view function documentation;
Includes link to source code



