;;;; $Id: avltree.el,v 1.1.1.1 1998-10-07 11:10:57 jareth Exp $ ;;;; This file implements balanced binary trees, AVL-trees. ;; Copyright (C) 1991-1995 Free Software Foundation ;; Author: Inge Wallin ;; Thomas Bellman ;; Maintainer: elib-maintainers@lysator.liu.se ;; Created: 10 May 1991 ;; Keywords: extensions, lisp ;;;; This file is part of the GNU Emacs lisp library, Elib. ;;;; ;;;; GNU Elib is free software; you can redistribute it and/or modify ;;;; it under the terms of the GNU General Public License as published by ;;;; the Free Software Foundation; either version 2, or (at your option) ;;;; any later version. ;;;; ;;;; GNU Elib is distributed in the hope that it will be useful, ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;;;; GNU General Public License for more details. ;;;; ;;;; You should have received a copy of the GNU General Public License ;;;; along with GNU Elib; see the file COPYING. If not, write to ;;;; the Free Software Foundation, Inc., 59 Temple Place - Suite 330, ;;;; Boston, MA 02111-1307, USA ;;;; ;;;; Initial author: Thomas Bellman ;;;; Lysator Computer Club ;;;; Linkoping University ;;;; Sweden ;;;; ;;;; Bugfixes and completion: Inge Wallin ;;;; ;;; Commentary: ;;; ;;; An AVL tree is a nearly-perfect balanced binary tree. A tree ;;; consists of two cons cells, the first one holding the tag ;;; 'AVLTREE in the car cell, and the second one having the tree ;;; in the car and the compare function in the cdr cell. The tree has ;;; a dummy node as its root with the real tree in the left pointer. ;;; ;;; Each node of the tree consists of one data element, one left ;;; sub-tree and one right sub-tree. Each node also has a balance ;;; count, which is the difference in depth of the left and right ;;; sub-trees. ;;; ;;; Code: (require 'elib-node) (require 'stack-m) (provide 'avltree) ;;; ================================================================ ;;; Functions and macros handling an AVL tree node. ;; ;; The rest of the functions needed here can be found in ;; elib-node.el. ;; (defmacro elib-avl-node-create (left right data balance) ;; Create and return an avl-tree node. (` (vector (, left) (, right) (, data) (, balance)))) (defmacro elib-avl-node-balance (node) ;; Return the balance field of a node. (` (aref (, node) 3))) (defmacro elib-avl-node-set-balance (node newbal) ;; Set the balance field of a node. (` (aset (, node) 3 (, newbal)))) ;;; ================================================================ ;;; Internal functions for use in the AVL tree package ;;; ;;; The functions and macros in this section all start with `elib-avl-'. ;;; (defmacro elib-avl-root (tree) ;; Return the root node for an avl-tree. INTERNAL USE ONLY. (` (elib-node-left (car (cdr (, tree)))))) (defmacro elib-avl-dummyroot (tree) ;; Return the dummy node of an avl-tree. INTERNAL USE ONLY. (` (car (cdr (, tree))))) (defmacro elib-avl-cmpfun (tree) ;; Return the compare function of AVL tree TREE. INTERNAL USE ONLY. (` (cdr (cdr (, tree))))) ;; ---------------------------------------------------------------- ;; Deleting data (defun elib-avl-del-balance1 (node branch) ;; Rebalance a tree and return t if the height of the tree has shrunk. (let* ((br (elib-node-branch node branch)) p1 b1 p2 b2 result) (cond ((< (elib-avl-node-balance br) 0) (elib-avl-node-set-balance br 0) t) ((= (elib-avl-node-balance br) 0) (elib-avl-node-set-balance br +1) nil) (t ; Rebalance (setq p1 (elib-node-right br) b1 (elib-avl-node-balance p1)) (if (>= b1 0) ;; Single RR rotation (progn (elib-node-set-right br (elib-node-left p1)) (elib-node-set-left p1 br) (if (= 0 b1) (progn (elib-avl-node-set-balance br +1) (elib-avl-node-set-balance p1 -1) (setq result nil)) (elib-avl-node-set-balance br 0) (elib-avl-node-set-balance p1 0) (setq result t)) (elib-node-set-branch node branch p1) result) ;; Double RL rotation (setq p2 (elib-node-left p1) b2 (elib-avl-node-balance p2)) (elib-node-set-left p1 (elib-node-right p2)) (elib-node-set-right p2 p1) (elib-node-set-right br (elib-node-left p2)) (elib-node-set-left p2 br) (if (> b2 0) (elib-avl-node-set-balance br -1) (elib-avl-node-set-balance br 0)) (if (< b2 0) (elib-avl-node-set-balance p1 +1) (elib-avl-node-set-balance p1 0)) (elib-node-set-branch node branch p2) (elib-avl-node-set-balance p2 0) t) )) )) (defun elib-avl-del-balance2 (node branch) (let* ((br (elib-node-branch node branch)) p1 b1 p2 b2 result) (cond ((> (elib-avl-node-balance br) 0) (elib-avl-node-set-balance br 0) t) ((= (elib-avl-node-balance br) 0) (elib-avl-node-set-balance br -1) nil) (t ; Rebalance (setq p1 (elib-node-left br) b1 (elib-avl-node-balance p1)) (if (<= b1 0) ;; Single LL rotation (progn (elib-node-set-left br (elib-node-right p1)) (elib-node-set-right p1 br) (if (= 0 b1) (progn (elib-avl-node-set-balance br -1) (elib-avl-node-set-balance p1 +1) (setq result nil)) (elib-avl-node-set-balance br 0) (elib-avl-node-set-balance p1 0) (setq result t)) (elib-node-set-branch node branch p1) result) ;; Double LR rotation (setq p2 (elib-node-right p1) b2 (elib-avl-node-balance p2)) (elib-node-set-right p1 (elib-node-left p2)) (elib-node-set-left p2 p1) (elib-node-set-left br (elib-node-right p2)) (elib-node-set-right p2 br) (if (< b2 0) (elib-avl-node-set-balance br +1) (elib-avl-node-set-balance br 0)) (if (> b2 0) (elib-avl-node-set-balance p1 -1) (elib-avl-node-set-balance p1 0)) (elib-node-set-branch node branch p2) (elib-avl-node-set-balance p2 0) t) )) )) (defun elib-avl-do-del-internal (node branch q) (let* ((br (elib-node-branch node branch))) (if (elib-node-right br) (if (elib-avl-do-del-internal br +1 q) (elib-avl-del-balance2 node branch)) (elib-node-set-data q (elib-node-data br)) (elib-node-set-branch node branch (elib-node-left br)) t))) (defun elib-avl-do-delete (cmpfun root branch data) ;; Return t if the height of the tree has shrunk. (let* ((br (elib-node-branch root branch))) (cond ((null br) nil) ((funcall cmpfun data (elib-node-data br)) (if (elib-avl-do-delete cmpfun br 0 data) (elib-avl-del-balance1 root branch))) ((funcall cmpfun (elib-node-data br) data) (if (elib-avl-do-delete cmpfun br 1 data) (elib-avl-del-balance2 root branch))) (t ;; Found it. Let's delete it. (cond ((null (elib-node-right br)) (elib-node-set-branch root branch (elib-node-left br)) t) ((null (elib-node-left br)) (elib-node-set-branch root branch (elib-node-right br)) t) (t (if (elib-avl-do-del-internal br 0 br) (elib-avl-del-balance1 root branch))))) ))) ;; ---------------------------------------------------------------- ;; Entering data (defun elib-avl-enter-balance1 (node branch) ;; Rebalance a tree and return t if the height of the tree has grown. (let* ((br (elib-node-branch node branch)) p1 p2 b2 result) (cond ((< (elib-avl-node-balance br) 0) (elib-avl-node-set-balance br 0) nil) ((= (elib-avl-node-balance br) 0) (elib-avl-node-set-balance br +1) t) (t ;; Tree has grown => Rebalance (setq p1 (elib-node-right br)) (if (> (elib-avl-node-balance p1) 0) ;; Single RR rotation (progn (elib-node-set-right br (elib-node-left p1)) (elib-node-set-left p1 br) (elib-avl-node-set-balance br 0) (elib-node-set-branch node branch p1)) ;; Double RL rotation (setq p2 (elib-node-left p1) b2 (elib-avl-node-balance p2)) (elib-node-set-left p1 (elib-node-right p2)) (elib-node-set-right p2 p1) (elib-node-set-right br (elib-node-left p2)) (elib-node-set-left p2 br) (if (> b2 0) (elib-avl-node-set-balance br -1) (elib-avl-node-set-balance br 0)) (if (< b2 0) (elib-avl-node-set-balance p1 +1) (elib-avl-node-set-balance p1 0)) (elib-node-set-branch node branch p2)) (elib-avl-node-set-balance (elib-node-branch node branch) 0) nil)) )) (defun elib-avl-enter-balance2 (node branch) ;; Return t if the tree has grown. (let* ((br (elib-node-branch node branch)) p1 p2 b2) (cond ((> (elib-avl-node-balance br) 0) (elib-avl-node-set-balance br 0) nil) ((= (elib-avl-node-balance br) 0) (elib-avl-node-set-balance br -1) t) (t ;; Balance was -1 => Rebalance (setq p1 (elib-node-left br)) (if (< (elib-avl-node-balance p1) 0) ;; Single LL rotation (progn (elib-node-set-left br (elib-node-right p1)) (elib-node-set-right p1 br) (elib-avl-node-set-balance br 0) (elib-node-set-branch node branch p1)) ;; Double LR rotation (setq p2 (elib-node-right p1) b2 (elib-avl-node-balance p2)) (elib-node-set-right p1 (elib-node-left p2)) (elib-node-set-left p2 p1) (elib-node-set-left br (elib-node-right p2)) (elib-node-set-right p2 br) (if (< b2 0) (elib-avl-node-set-balance br +1) (elib-avl-node-set-balance br 0)) (if (> b2 0) (elib-avl-node-set-balance p1 -1) (elib-avl-node-set-balance p1 0)) (elib-node-set-branch node branch p2)) (elib-avl-node-set-balance (elib-node-branch node branch) 0) nil)) )) (defun elib-avl-do-enter (cmpfun root branch data) ;; Return t if height of tree ROOT has grown. INTERNAL USE ONLY. (let ((br (elib-node-branch root branch))) (cond ((null br) ;; Data not in tree, insert it (elib-node-set-branch root branch (elib-avl-node-create nil nil data 0)) t) ((funcall cmpfun data (elib-node-data br)) (and (elib-avl-do-enter cmpfun br 0 data) (elib-avl-enter-balance2 root branch))) ((funcall cmpfun (elib-node-data br) data) (and (elib-avl-do-enter cmpfun br 1 data) (elib-avl-enter-balance1 root branch))) (t (elib-node-set-data br data) nil)))) ;; ---------------------------------------------------------------- (defun elib-avl-mapc (map-function root) ;; Apply MAP-FUNCTION to all nodes in the tree starting with ROOT. ;; The function is applied in-order. ;; ;; Note: MAP-FUNCTION is applied to the node and not to the data itself. ;; INTERNAL USE ONLY. (let ((node root) (stack (elib-stack-create)) (go-left t)) (elib-stack-push stack nil) (while node (if (and go-left (elib-node-left node)) (progn ; Do the left subtree first. (elib-stack-push stack node) (setq node (elib-node-left node))) (funcall map-function node) ; Apply the function... (if (elib-node-right node) ; and do the right subtree. (setq node (elib-node-right node) go-left t) (setq node (elib-stack-pop stack) go-left nil)))))) (defun elib-avl-do-copy (root) ;; Copy the tree with ROOT as root. ;; Highly recursive. INTERNAL USE ONLY. (if (null root) nil (elib-avl-node-create (elib-avl-do-copy (elib-node-left root)) (elib-avl-do-copy (elib-node-right root)) (elib-node-data root) (elib-avl-node-balance root)))) ;;; ================================================================ ;;; The public functions which operate on AVL trees. (defun avltree-create (compare-function) "Create an empty avl tree. COMPARE-FUNCTION is a function which takes two arguments, A and B, and returns non-nil if A is less than B, and nil otherwise." (cons 'AVLTREE (cons (elib-avl-node-create nil nil nil 0) compare-function))) (defun avltree-p (obj) "Return t if OBJ is an avl tree, nil otherwise." (eq (car-safe obj) 'AVLTREE)) (defun avltree-compare-function (tree) "Return the comparision function for the avl tree TREE." (elib-avl-cmpfun tree)) (defun avltree-empty (tree) "Return t if TREE is emtpy, otherwise return nil." (null (elib-avl-root tree))) (defun avltree-enter (tree data) "In the avl tree TREE insert DATA. Return DATA." (elib-avl-do-enter (elib-avl-cmpfun tree) (elib-avl-dummyroot tree) 0 data) data) (defun avltree-delete (tree data) "From the avl tree TREE, delete DATA. Return the element in TREE which matched DATA, nil if no element matched." (elib-avl-do-delete (elib-avl-cmpfun tree) (elib-avl-dummyroot tree) 0 data)) (defun avltree-member (tree data) "Return the element in the avl tree TREE which matches DATA. Matching uses the compare function previously specified in `avltree-create' when TREE was created. If there is no such element in the tree, the value is nil." (let ((node (elib-avl-root tree)) (compare-function (elib-avl-cmpfun tree)) found) (while (and node (not found)) (cond ((funcall compare-function data (elib-node-data node)) (setq node (elib-node-left node))) ((funcall compare-function (elib-node-data node) data) (setq node (elib-node-right node))) (t (setq found t)))) (if node (elib-node-data node) nil))) (defun avltree-map (__map-function__ tree) "Apply MAP-FUNCTION to all elements in the avl tree TREE." (elib-avl-mapc (function (lambda (node) (elib-node-set-data node (funcall __map-function__ (elib-node-data node))))) (elib-avl-root tree))) (defun avltree-first (tree) "Return the first element in TREE, or nil if TREE is empty." (let ((node (elib-avl-root tree))) (if node (progn (while (elib-node-left node) (setq node (elib-node-left node))) (elib-node-data node)) nil))) (defun avltree-last (tree) "Return the last element in TREE, or nil if TREE is empty." (let ((node (elib-avl-root tree))) (if node (progn (while (elib-node-right node) (setq node (elib-node-right node))) (elib-node-data node)) nil))) (defun avltree-copy (tree) "Return a copy of the avl tree TREE." (let ((new-tree (avltree-create (elib-avl-cmpfun tree)))) (elib-node-set-left (elib-avl-dummyroot new-tree) (elib-avl-do-copy (elib-avl-root tree))) new-tree)) (defun avltree-flatten (tree) "Return a sorted list containing all elements of TREE." (nreverse (let ((treelist nil)) (elib-avl-mapc (function (lambda (node) (setq treelist (cons (elib-node-data node) treelist)))) (elib-avl-root tree)) treelist))) (defun avltree-size (tree) "Return the number of elements in TREE." (let ((treesize 0)) (elib-avl-mapc (function (lambda (data) (setq treesize (1+ treesize)) data)) (elib-avl-root tree)) treesize)) (defun avltree-clear (tree) "Clear the avl tree TREE." (elib-node-set-left (elib-avl-dummyroot tree) nil)) ;;; avltree.el ends here